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E��������� Intervals, Rank Intervals and Dominance 

Relations of Decision-Making Units with Fixed-Sum Outputs 

 

Y. Li, M. Guo, L. Liang and A. Salo 

 

 

Abstract:  

How to evaluate the performance of decision-making units (DMUs) with fixed-sum 

outputs is a challenging question in data envelopment analysis (DEA). Recently, this 

challenge has been addressed by determining the common equilibrium efficient 

frontier; but because there can be several feasible equilibrium efficient frontiers, it can 

be difficult to provide valid results. To address this problem, we consider all feasible 

equilibrium efficient frontiers and develop several models to obtain the corresponding 

efficiency intervals, rank intervals as well as dominance relations for DMUs with 

fixed-sum outputs. We illustrate the proposed approach with two numerical examples 

and show that it gives more informative results than earlier DEA approaches.  
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1� Introduction 

Data envelopment analysis (DEA) developed by Charnes et al. (1978) is a 

nonparametric approach to measure the performance of peer decision-making units 

(DMUs) with multiple inputs and outputs. Because DEA models such as CCR 

(Charnes et al., 1978) and BCC (Banker et al., 1984) are simple and can be readily 

solved, DEA has been employed in many areas, including efficiency analyses of 

Olympic Games (Lozano et al., 2002; Li et al., 2008; Lei et al., 2015), banks (Kao and 

Liu, 2004; Camanho and Dyson, 2005; Alireza et al., 2017), environments (Dai et al., 

2014; Lozano and Sebastian, 2017; Burdon and Li, 2019) and hospitals (Zhang et al., 

2011; Du et al., 2014), among others. 

However, Dyson et al. (2001) pointed out several pitfalls in applying DEA. One 

of them is called “exogenous and constrained factors”
1
, referring to situations in 

which some factors controlled by DMUs are constrained by the scale used, such as 

percentages. For example, the market share commonly used as an output in 

performance evaluation is fixed (Yang et al., 2014), because the total is 100%. 

Analogously, in the performance evaluation of nations in Olympic Games, the sum of 

gold (silver or bronze) medals is fixed so that if one country gets more of them, others 

get less (Lins et al., 2003; Wu et al., 2009; Du et al., 2018). In this paper, we call these 

kinds of factors or outputs as fixed-sum outputs. Dyson et al. (2001) suggested two 

approaches for addressing them: (1) using input-oriented DEA models and (2) 

developing new DEA approaches that satisfy fixed-sum constraints of outputs.  

The first approach does not seem suitable when using inputs such as gross 

domestic product (GDP) and population, for instance. In the input-oriented DEA 

model, inefficient DMUs would need to improve their efficiencies by reducing their 

use of inputs; but the aim of reducing GDP or population would be ridiculous (Lins et 

al., 2003; Li et al., 2008). Consequently, several authors approach this pitfall based on 

the second approach. For example, Lins et al. (2003) were the first to propose a zero 

sum gains (ZSG) DEA approach which they applied to evaluate the performance of 

                                                             

1For details, readers can refer to Pitfall 5.4 in Dyson et al. (2001). 
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c��	
��� �	 
� ���� Sydney Olympic Games. Zero sum means that the sum of 

outputs’ (gold, silver or bronze medals) adjustments across all participating nations is 

zero. Lins et al. (2003) propose two adjustment strategies, the equal reduction strategy 

and the proportional reduction strategy, whereby adjustments in first strategy can lead 

to negative outputs while those in the second cannot. Because the ZSG-DEA model 

with the second adjustment strategy is nonlinear, Bi et al. (2013) transformed it into a 

linear one. The resulting ZSG-DEA model has been applied to measure the 

performance of DMUs producing undesired outputs (Gomes and Lins 2008; Chiu et al. 

2013). It has also been extended to a non-radial ZSG-DEA model (Fonseca et al. 2010) 

as well as to a fixed-sum outputs DEA (FSODEA) model based on minimizing output 

adjustments across all DMUs (Yang et al. 2011). Wu et al. (2014) apply the FSODEA 

model to measure environmental efficiency with undesirable fixed-sum outputs. 

Yang et al. (2014) found that the novel ZSG-DEA model and its extensions such 

as the FSODEA model evaluate DMUs based on different efficient frontiers. This 

means that DMUs are, in effect, evaluated based on different evaluation platforms, 

making it hard to compare the efficiency results from these models. Therefore, Yang 

et al. (2014) proposed an equilibrium efficient frontier data envelopment analysis 

(EEFDEA) approach in which all DMUs are evaluated based on a common efficient 

frontier; but this approach can be very demanding computationally, because 

determining the efficient equilibrium frontier may require a large number of steps 

especially when the number of DMUs is large. Yang et al. (2015) therefore proposed a 

new approach which can generate a common equilibrium efficient frontier in a single 

step. However, the equilibrium efficient frontier based on Yang et al. (2014) and Yang 

et al. (2015) may not be unique. Fang (2016) attempted to achieve a unique 

equilibrium efficient frontier via a secondary goal approach. Zhu et al. (2017) showed 

that this approach cannot ensure that the equilibrium efficient frontier is unique and 

consequently sought to improve it through additional constraints such as assurance 

regions (AR-I type).  

While the above approaches are helpful in choosing a unique equilibrium 

efficient frontier, they have two main drawbacks. First, in many applications there are 
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n� clear principles for how these additional constraints should be generated and, even 

if such constraints are introduced, it is difficult to test the uniqueness of the resulting 

equilibrium efficient frontier. Second, these approaches evaluate DMUs just based on 

a single feasible equilibrium efficient frontier, neglecting other feasible frontiers and 

their implications for efficiency analysis.  

These observation motivate a new research question: Is it possible to evaluate all 

DMUs based on all feasible equilibrium efficient frontiers? This question is 

challenging because there can be an infinite number of feasible equilibrium efficient 

frontiers so that it is impossible to enumerate them all. Furthermore, because the 

equilibrium efficient frontier based on the generalized equilibrium efficient frontier 

data envelopment analysis (GEEFDEA) approach may be not unique, results 

concerning  the efficiency of DMU may vary greatly depending on which one of the 

equilibrium efficient frontiers is selected. In this paper, we develop several models to 

address this question and apply them to obtain robust efficiency results, including 

rank intervals as well as dominance relations among all DMUs. 

The structure of this paper is as follows. Section 2 reviews the GEEFDEA 

models and Section 3 presents models for establishing ranking interval and dominance 

relations. Section 4 illustrates the proposed efficiency measures based on a small 

dataset from the literature. Section 5 applies the proposed models to measure the 

performance of appliance industry companies. The last section concludes with 

suggestions for future research directions. 

2. GEEFDEA Models 

We first introduce the GEEFDEA approach proposed by Yang et al. (2015) for finding  

a common equilibrium efficient frontier for the evaluation of all DMUs. This 

approach consists of two models. One generates a common equilibrium efficient 

frontier and the other evaluates each DMU based on this frontier.  

Assume that there are n DMUs and each DMU consumes m inputs xij, i = 1,…,m, 

j = 1,…,n to produce s variant-sum outputs yrj, r = 1,2,…,s and l fixed-sum outputs ftj, 

t = 1,…,l. The variant-sum outputs are freely disposable while the fixed-sum outputs 



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

s���s�� the constraints ∑ ��� = ������ , ! = 1, … , " where Ft is a constant. 

The first model in the GEEFDEA approach is 

#$% & & '�(��
)

���

�

���
 

*. !. ∑ -/0/�2/�� + ∑ '�(5�� + 6��))���
∑ 89:9�;9��

= 1    ∀> 

& 6�� = 0    
�

���
∀!                                          (1) 

(�� = #@:A6�� , 0B,    ∀!, > 

5�� + 6�� ≥ 0,    ∀!, > 

-/ , 89 , '� ≥ 0, 6��  5DEE, 

where ur, wt and vi represent weights of the variant-sum output yr, the fixed-sum 

output ft and the input xi, respectively. The term δtj denotes the t-th output adjustment 

of DMUj and it can be positive, negative or zero. Model (1) can be transformed to the 

following  

#$% & & '�F6��F
)

���

�

���
 

*. !. ∑ -/0/�2/�� + ∑ '�(5�� + 6��))���
∑ 89:9�;9��

= 1    ∀> 

& 6�� = 0    
�

���
∀!                                             (2) 

5�� + 6�� ≥ 0,    ∀!, > 

-/ , 89 , '� ≥ 0, 6��  5DEE. 

This nonlinear model can be transformed into a linear one with the algorithm in Yang 

et al. (2015). Models (1) and (2) characterize the equilibrium efficient frontiers in one 

step. For details, readers are referred to Appendix A.  

Suppose the optimal solution of δtj in model (2) is 6��∗ , ! = 1, … ", > = 1, … , %. 

Then each DMUj adjusts its fixed-sum output from 5��  to 5�� + 6��∗ ,  ! = 1, … , " 
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w���� ������� its inputs and variant-sum outputs unchanged. These adjusted DMUs 

have a common equilibrium efficient frontier, because they are all efficient by the first 

set of constraints in Model (2).   

Based on the common equilibrium efficient frontier, Yang et al. (2015) evaluate 

performance of DMUs by solving the optimization problem  

��
������ = !"#

∑ %&'&�
(
&)*

∑ +,-,� + ∑ /0
1
0)* 20�

3
,)*

 

�. �.  ∑ ����!"�#$
∑ %&'&! + ∑ ()*)#$ (-)! + /)!∗ )2&#$

≥ 1    ∀6                     (3) 

%& , �� , () ≥ 0,    ∀:, �, ;, 
where /)!∗ , ∀�, 6 is the optimal value of δtj in Model (2). These constraints ensure that 

all DMUs are evaluated based on a common equilibrium efficient frontier. 

However, the equilibrium efficient frontier based on Yang et al. (2015) may not 

be unique (Fang, 2016; Zhu et al., 2017). To see this, suppose that the optimal value 

of the objective function in Model (2) is opti
*
. Then, all equilibrium efficient frontiers 

are characterised by the equations  

< < ()=/)!=
*

)#$
=

?

!#$
@A�;∗ 

∑ %&'&!2&#$ + ∑ ()(-)! + /)!)*)#$
∑ ����!"�#$

= 1    ∀6 

< /)!
?

!#$
= 0      ∀�                                           (4) 

-)! + /)! ≥ 0      ∀�, 6 

%& , �� , () ≥ 0, /)!   -:CC. 

In Model (4), there are m+s+l+n*l variables to be determined, but only n+l equality 

constraints. Therefore, there is considerable flexibility in choosing /)!∗ , ∀ �, 6 and 

consequently there can exist multiple equilibrium efficient frontiers. Zhu et al. (2017) 

propose a series of models for calculating the minimal and maximal /)!∗ , ∀�, 6 for 
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D !j. Their numerical examples show there are multiple solutions ���∗ , ∀�, � as well 

as multiple equilibrium efficient frontiers. 

For the convenience, we introduce the notations  = ( !, … ,  ")# , $ =

($!, … , $%)#, & = (&!, … , &')#, δ= *+��-, ∀�, �. Then, the feasible set of solutions for 

Model (4) can be represented as 

  / = {(u, v, w, δ)|u, v, w, δ satisfy Model (4)}    (11) 

Because this set S contains all feasible equilibrium efficient frontiers, we can evaluate 

all DMUs by calculating their efficiency intervals, rank intervals and dominance 

relations over the set S regardless of how many feasible equilibrium efficient frontiers 

there are.  

3. Models for Efficiency, Rank Intervals and Dominance Relations 

3.1.Efficiency Intervals 

According to Podinovski (2001), the efficiency of DMUk can be defined as 

35( , &, $, +) =
∑ 7898:;∑ <>?>:>8

∑ @ABA:A
  and (u, v, w, δ) ∈ /.   (R2) 

Because there can be multiple equilibrium efficient frontiers, the efficiency of each 

DMU based on Model (3) can vary depending on which frontier is being considered. 

Here, we adjust Model (R2) to calculate the minimal and maximal efficiency values of 

each DMU as 

DEF/DHI
∑  JKJ5

"
JL! + ∑ $�O�5%�L!

∑ &PFP5P
 

Q. �. S S $�T+��T
%

�L!
=

U

�L!
VW�H∗ 

∑  JKJ�"JL! + ∑ $�(O�� + +��)%�L!
∑ &PFP�'PL!

= 1    ∀� 

S +��
U

�L!
= 0      ∀�                                    (5) 

O�� + +�� ≥ 0      ∀�, � 

 J , &P , $� ≥ 0, +��  O[\\. 
The objective function in Model (5) establishes the minimal and maximal efficiencies 
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f"# DMUk subject to constraints in the same way as in Model (4), considering all 

possible equilibrium efficient frontiers. As stated in Theorem 1, Model (5) has a 

feasible solution always (see Appendix for a detailed proof).  

 

Theorem 1: Model (5) is always feasible. 

 

Model (5) is nonlinear. We first use Charnes–Cooper transformation (Charnes and 

Cooper, 1962) by setting 
�

∑ ����� �!"
= #, $% = # ∗ $%, '( = # ∗ '( , )* = # ∗ )* and  

transform it into  

+,-/+.0(2 '(3(4
5

(6�
+ 2 )*8*4)

:

*6�
 

;. >. 2 2 )*?@*A?
:

*6�
=

B

A6�
# ∗ CD>.∗ 

2 '(3(A
5

(6�
− 2 $%-%A

F

%6�
+ 2 )*(8*A + @*A)

:

*6�
= 0    ∀J 

2 @*A
B

A6�
= 0      ∀>                                            (6) 

2 $%-%4 = 1
F

%6�
 

8*A + @*A ≥ 0      ∀>, J 

'( , $% , )*, # ≥ 0, δPQ free. 

Second, we set @*AR = )*@*A and obtain the model  

+,-/+.0(2 '(3(4
5

(6�
+ 2 )*8*4)

:

*6�
 

;. >. 2 2?δPQR ?
:

*6�
=

B

A6�
# ∗ CD>.∗ 

2 '(3(A
5

(6�
− 2 $%-%A

F

%6�
+ 2()*8*A + δPQR )

:

*6�
= 0    ∀J 



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

     ∀%                                          (7) 

� ����� = 1
�

� !
 

"#$#% + δ'() ≥ 0      ∀., 2 

34 , �� , "#, 5 ≥ 0, δ'()  free. 

Third, we set 7#% = !
8 (|:#%) | + :#%) ) and <#% = !

8 (>:#%) > − :#%) ) (Si et al., 2013), 

and transform Model (7) into  

@7�/@BC(� 34D4�
E

4 !
+ � "#$#�)

F

# !
 

G. .. � �(7#% + <#%)
F

# !
=

H

% !
5 ∗ JK.B∗ 

� 34D4%
E

4 !
− � ����%

�

� !
+ �("#$#% + 7#% − <#%)

F

# !
= 0    ∀2 

�(7#% − <#%
H

% !
) = 0      ∀.                                   (8) 

� ����� = 1
�

� !
 

"#$#% + 7#% − <#% ≥ 0      ∀., 2 

34 , �� , "#, 5, 7#%, <#% ≥ 0.  
Denote the best and worst efficiencies of DMUk as M��NO  and M���H, respectively. 

Therefore, the efficiency of DMUk belongs to the interval [ M���H, M��NO ] when 

considering all feasible equilibrium efficient frontiers. In addition, we have the 

following theorem. 

 

Theorem 2: The efficiency of DMUk assumes all values in the interval [M���H, M��NO]. 
 

By Theorem 2, the DMUk’s efficiency is not unique and thus its efficiency rank 

relative DMUs may vary greatly. However, if the efficiency intervals of two DMUs do 
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$%& overlap, then their relative ranks can be determined conclusively. For example, if 

DMU1’s efficiency interval is [0.5, 0.8] and that of DMU2 is [0.9, 1.0], then DMU2 

should have a higher rank than DMU1. However, in many cases the DMUs’ efficiency 

intervals may overlap, which can be addressed as suggested in the following 

subsection.  We also note that in the efficiency evaluations based on Model (5), the 

constraints are the same as in Model (4), and thus the DMUs are evaluated based all 

on equilibrium efficient frontiers.  

3.2 Rank Intervals 

This subsection proposes a series of models to calculate the rank interval of each 

DMU. Based on Salo and Punkka (2011), we define the sets  

���(�, �, �,  ) = !" ∈ {1, … , $}%&'(�, �, �,  ) > &�(�, �, �,  )*, (�, �, �,  ) ∈ +}       

��-(�, �, �,  ) = {" ∈ {1, … , $}\{.}|&'(�, �, �,  ) ≥  &�(�, �, �,  )}, (�, �, �,  ) ∈ +},     

where ���(�, �, �,  ) contains other DMUs whose efficiency is strictly higher than 

that of DMUk, while those whose efficiency ratios are at least as high that of DMUk 

are included in ��-(�, �, �,  ). 

Correspondingly, the best and worst efficiency ranks are 2��(�, �, �, δ) = 1 +
|���(�, �, �, δ)| and 2�-(�, �, �, δ) = 1 + |��-(�, �, �, δ)|  (where |R| denotes the 

number of elements in the set R). The difference between 2��(�, �, �, δ)  and 

2�-(�, �, �, δ) is that if DMUk and DMUp are the two DMUs with the highest 

efficiency ratio along all DMUs, then the former rank them both as first, but the latter 

ranks them as second. 

The bounds of ranking interval [2�567, 2�589]for DMUk are  

2�567 = :;$(<,?,@,A)∈B 2��(�, �, �,  ) and 2�589 = :CD(<,?,@,A)∈B 2�-(�, �, �,  ). 

Here, we propose the following model for calcultating the best (highest) ranking 2�567: 

2�567 = :;$ [ 1 + E F']
'G�

 

H. J. E E �K% KL%
M

KNO
=

7

LNO
P"J;∗ 
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  ∀/ 

0 $"�
2

���
= 0      ∀4 

#"� + $"� ≥ 0      ∀4, /                              (9) 

∑ 7���8���� + ∑ !"#"8 − ;<8%"��
∑ &'*'8,'��

≤ ∑ 7���?���� + ∑ !"#"?%"��
∑ &'*'?,'��

   ∀@ ∈ {1, … , B}\{C} 

<8 ∈ {0,1},      ∀@ ∈ {1, … , B}\{C} 

7� , &' , !", D"� , E"� ≥ 0. 

In Model (9), the first four sets of constraints are the same as in Model (4), 

ensuring that all possible equilibrium efficient frontiers are considered. The fifth set of 

constraints (where H is a large positive constant) treat DMUk as a benchmark and 

check whether DMUk’s efficiency is strictly smaller than other DMUs’ such that 

F?(7, &, !, $) < F8(7, &, !, $), @ ∈ {1, … , B}\{C} . If  F?(7, &, !, $) < F8(7, &, !, $), 
then <8 = 1, but otherwise Model (9) has no feasible solutions. In this case, each 

DMUp such that F?(7, &, !, $) < F8(7, &, !, $), @ ∈ {1, … , B}\{C} has a higher rank 

than DMUk. Therefore, the optimum value for Model (9) gives the best efficiency 

rank I?,'2 for DMUk. 

Similarly, we calculate the worst (lowest) rank I?,JK of DMUk by solving the 

optimization problem 

I?,JK = LD*  [1 + 0 <8
8M?

] 

N. 4. 0 0 !"O$"�O
%

"��
=

2

���
P@4Q∗ 

∑ 7�������� + ∑ !"(#"� + $"�)%"��
∑ &'*'�,'��

= 1   ∀/ 

0 $"�
2

���
= 0      ∀4 

#"� + $"� ≥ 0      ∀4, /                              (10) 
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     ∀5 ∈ {1, … , 8}\{9} 

'� ∈ {0,1},      ∀5 ∈ {1, … , 8}\{9} 
�� , �� , ��,  �! , "�! ≥ 0.  

In Model (10), the fifth set of constraints again treats DMUk as a benchmark and 

checks whether DMUk’s efficiency is equal to or smaller than other DMUs’ such that 

$%(�, �, �, &) ≤ $*(�, �, �, &), + ∈ {1, … , .}\{/} . If  $%(�, �, �, &) ≤ $*(�, �, �, &), 
then 3* = 1; otherwise, Model (10) does not have a feasible solution and any DMUp 

such that $%(�, �, �, &) ≤ $*(�, �, �, &), + ∈ {1, … , .}\{/}  should have a higher 

rank than DMUk. Therefore, the solution to the Model (10) gives 5%678, the worst 

efficiency rank for DMUk. 

Models (9) and (10) are nonlinear and thus optimal values can be hard to obtain. 

Salo and Punkka (2011) linearize their rank-based models in effect by setting 

$%(�, �, �, &) = 1. However, we cannot set $%(�, �, �, &) = 1, because this could 

violate the second set of constraints.  

We therefore transform the two nonlinear models into linear ones as follows. 

Take Model (9) as an example and set $%(�, �, �, &) = ℎ. Based on Theorem 2, we 

know that h belongs to [:%6�<, :%678]. Thus, we transform the fifth set of constraint in 

model (9) into three parts as follows: 

5%6�<(ℎ) = >?. [ 1 + A 3*]
*B%

 

C. D. A A( �! + "�!)
E

�FG

<

!FG
− IJ∗ = 0 

A ��L�!
M

�FG
− A ��N�!

6

�FG
+ AO��P�! +  �! − "�!Q = 0   

E

�FG
∀S 

A( �! − "�!)
<

!FG
= 0      ∀D 

��P�! +  �! − "�! ≥ 0      ∀D, S                            (11) 

A ��L�*
M

�FG
− ℎ A ��N�* +

6

�FG
A ��P�* − T3*

E

�FG
≤ 0  ∀+ ∈ {1, … , .}\{k} 
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� "#$#�
%

# !
+ � &'('� = ℎ

*

' !
 

,- ∈ {0,1},      ∀4 ∈ {1, … , 5}\{6} 

"# , �� , &', 7'8 , 9'8 ≥ 0. 
Model (11) can be regarded as a linear model with the parameter ℎ ∈ [<���>, <��?@], 
and a heuristic search algorithm is proposed to calculate the best rank of DMUk 

����� = � ! {�����(ℎ)| ℎ ∈ [%����, %��&']} as follows: 

Set ℎ = %��&' − + × -, where - is the step size of the heuristic search algorithm 

and + = 0,1,2, … , [+�&'] + 1 . Here, [+�&']  is the largest integer value of 

(%��&' − %����) divided by the step size -. In the iterative process of solving the 

model (11), we increase k from its initial value 0 to [+�&'] + 1 with the step size - 

and compute the corresponding �����(ℎ) for each h. After check each k, we obtain 

the best rank ����� = � ! {�����(ℎ)| ℎ ∈ [%����, %��&']}. 

Similarly, model (10) can be transformed to  

���&'(ℎ) = �/3 [1 + 4 56]
67�

 

8. :. 4 4(/;< + >;<)
?

;@A

�

<@A
− BC∗ = 0 

4 EFGF<
H

F@A
− 4 I�3�<

�

�@A
+ 4JK;L;< + /;< − >;<M = 0   

?

;@A
∀O 

4(/;< − >;<)
�

<@A
= 0      ∀: 

K;L;< + /;< − >;< ≥ 0      ∀:, O                          (12) 

− 4 EFGF6
H

F@A
+ ℎ 4 I�3�6 −

�

�@A
4 K;L;6 + Q56

?

;@A
≤ Q  ∀S ∈ {1, … , !}\{+} 

4 I�3�� = 1
�

�@A
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'( ∈ {0,1},      ∀. ∈ {1, … , /}\{2} 

�� , 34 , "#, 5#6 , 7#6 ≥ 0. 
Model (12) is a linear model with the parameter ℎ ∈ [:�;4<, :�;>?], and the worst rank 

of DMUk is @�;>? = A5B {@�;>?(ℎ)| ℎ ∈ [:�;4<, :�;>?]}. Therefore, we can calculate 

the best (@�;4<) and worst (@�;>?) ranks for each DMU considering all feasible 

equilibrium efficient frontiers.  

3.3 Efficiency Dominance 

This subsection explores dominance relations among DMUs. We first extend the  

definition of efficiency dominance (Salo and Punkka, 2011) so that: 

DEFINITION 1. DMUk dominates DMUg (denoted by���� ≻ ����) if and only if 

 �(!, ", #, $) ≥  �(!, ", #, $) for all (!, ", #, $)ϵ* 

 �(!, ", #, $) >  �(!, ", #, $) for some (!, ", #, $)ϵ*. 

This means that if DMUk dominates DMUg, then the efficiency of DMUk must not be 

lower than that of DMUg for any feasible equilibrium efficient frontier and that it has 

to be strictly higher for some frontier. As shown by Salo and Punkka (2011), this 

dominance relation among DMUs is irreflexive, asymmetric and transitive. 

We explore the dominance relation in Definition 1 by considering ratios between 

the efficiencies of DMUk and DMUg by defining  

��,�(!, ", #, $) =  �(!, ", #, $)
 �(!, ", #, $) , (!, ", #, $) ϵ *    (13). 

Because there are many feasible equilibrium efficient frontiers in *, we can calculate 

the maximum and minimum values of ��,�(!, ", #, $), denoted by ��,� and ��,�, 

respectively, as follows: 

+-//+24 [5 !676�
8

69:
+ 5 #<?<�

@

<9:
]/ℎ 

B. C. 5 5(-<D + E<D)
@

<9:

F

D9:
− HI∗ = 0 
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1

) !
∀3 

�(,)� − -)�)
6

� !
= 0      ∀7 

()*)� + ,)� − -)� ≥ 0      ∀7, 3                             (14) 

� #$%$< = 1
&

$ !
 

� ����>
�

� !
− ℎ � #$%$>

&

$ !
+ � ()*)> = 0

1

) !
 

�� , #$ , (), ,)� , -)� ≥ 0. 
In Model (14), DMUg serves as a benchmark whose efficiency is set to 

A>(�, #, (, B) = ℎ, h ϵ [D>&$6, D>&EF]. Thus, Model (14) can be treated as a linear one 

with a parameter h so that we can use an similar algorithm similar to that for Model 

(11) to calculate G<,>  and G<,> , respectively. For instance, if G<,> = 1.33  and 

G<,> = 1.18, the efficiency of DMUk can be at most 33% but not less than 18% 

greater than that of DMUg. Specifically, DMUk dominates DMUg if the minimum 

value G<,> > 1 or if G<,> = 1 and G<,> > 1; otherwise, DMUk does not dominate 

DMUg. Thus, for example, if , there is no dominance for the two DMUs.  

4. Dataset from Yang et al. (2011) 

This section illustrates the above models and compares them with CCR and 

GEEFDEA methods. We first revisit the data set in Yang et al. (2011) on 6 DMUs 

which produce a single fixed-sum output (see Table 1). 

Table 1 Dataset from Yang et al. (2011). 

'() A B C ' * F 

I+,-. 1 / / / / / 

)+U02345sum output 1 6 / 6 7 8 7 

F02345sum output 2 6 9 / / 8 8 
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T:;<= > ?@GH? the results based on CCR model, GEEFCCR model and the models 

proposed in this paper. The second column shows that DMUs A, B, D and F are 

efficient based on the CCR model and they have the same rank. The third column 

shows the results for GEEFCCR models, indicating that there are some efficient 

DMUs whose efficiencies exceed 1 with the rank ordering F > A > D >B. However, 

the DMUs’ efficiency scores and ranks based on GEEFCCR models are calculated by 

choosing only one feasible equilibrium efficient frontier, even if there are many 

feasible equilibrium efficient frontiers so that the DMUs’ efficiency scores and ranks 

may vary greatly depending on which efficient frontier is chosen (Fang, 2016; Zhu et 

al., 2017). 

 

Table 2 Results based on three models.  

JKL MMN Oodel  PQQRMMN OSVWX  YrSZS[WV OSVWXs in this paper 

[\SrW r]^_ [\SrW r]^_ Wee `^aWrb]X r]^_`^d `^aWrb]X VSO`^]aWV gh 

i j j jkjlmo m pjkjqttu jkvxlyz pmuvz  

{ j j j l pqkxtyou jkxlymz pjulz  

M qky y qktvqm y pqklyj|u qktyomz p|uyz iu{uJuR

J j j jkqtol v pqklyj|u jkjyomz pmuyz R

Q qkyyyt | qktyjo | pqktvx|u qkomvjz pvuyz iu{uR

R j j jkmx|t j pqkomvju jkvvx|z pjulz  

 

The last column shows the efficiency intervals, rank intervals and dominance 

relations based on the proposed models by considering all feasible equilibrium 

efficient frontiers. First, we see that each DMU’s efficiency based on the GEFECCR 

model takes a value which belongs to efficiency interval based on Model (5). For 

example, based on GEFECCR model, the efficiency for DMUA is 1.1429, which is in 

the efficiency interval [1.1077, 1.3846] given by Model (5).   
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Figure1. Rank comparison based on the GEEFCCR method and the proposed 

method.  

Second, we note that the rank of each DMU under the GEEFCCR method is a 

special case of the models proposed in this paper. For example, in the GEEFCCR 

method the rank of DMUA is 2, which is in the corresponding rank interval [2, 3] for 

DMUA (see Figure 1 for details). The orange triangle denotes the rank order of each 

DMU based on the GEEFCCR method, while the length of cylindrical shape shows 

the rank interval for each DMU based on our models.   

Third, the proposed models imply the dominance relations in Figure 2. 

Specifically DMUF dominates DMUD, while DMUD and DMUF both are 

CCR-efficient. Still, DMUF does not dominate DMUA and DMUB, even though it has 

the highest ranking under the GEEFCCR method.  

}

~

�

�

�

�
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Figure 2. Efficiency dominance relations among DMUs.  

 

An interesting finding is that DMUC is dominated by DMUB based on the 

approach we have proposed even if there is no such dominance relation based on the 

approach proposed by Salo and Punkka (2011). Specifically, the outputs of DMUB and 

DMUC  are (1,4) and (3,1), respectively, and consequently neither DMU dominates 

the other based on the approach proposed by Salo and Punkka (2011). Moreover, we 

find that DMUE is dominated by DMUB based on our approach. Therefore, our 

approach can establish additional dominance relations among the DMUs based on the 

efficiency evaluation with fixed-sum outputs.  

Compared to GEEFDEA methods, the proposed efficiency measures help 

evaluate DMUs with fixed-sum outputs more objectively and comprehensively. In 

addition to efficiency values, rank intervals and dominance relations of DMUs 

provide more information about the performance of DMUs in the context of 

fixed-sum outputs. 

5. Apply to Appliance Industry Companies 

This section applies the proposed approach to the dataset on the appliance industry 

considered in Yang et al. (2014). This dataset (see Table 3) has 18 appliance industry 

companies with two inputs (total assets (million yuan) and number of employees) and 

two fixed-sum outputs (profits (million yuan) and market share). The total profit of 
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����� ������ies is a constant and the total market share is 100%. 

Table 3 Dataset of appliance industry companies of China in 2012 

�ompany ����� ������ ��������� ������� ������ ����� 

���� ¡��  Midea ¢£¢¢¤  ¥¥¦£§  ¨¥££  ©ª«£ª¥§  

¬�� ¡�� Haier ¨£§ª¨  ¢£©¦  ª¥£¤  ©¤«ªª§©  

�®�� ¨§ªª§  ¢£¥ª¦  ©¦¤  «§¨¢©  

¯����� Gree ¢ª©ª  §ª¥§©  ¢ª¨§  ©©«¢£¢©  

°������ Changhong ¢©¥¢©  ¥¤¨£  ¦¤¥  §«ª©££  

°����  Appliance ¢£§¥  §§¢©  ¦ª©  ©¨«¤¨¢©  

��± Corporation §¦¤©¦  ¢¥©£¤  ©¤©¨  «¦¦¢£  

²������ Electric ©¥©¦¢  ©¢§§¥  ©¥£  ¨«ª¥¥¤  

°��³���� Digital ©§§¥ª  ª¥¤¤¤  ©¤¨£  ª«£§¥  

´���� Group ©¥£¤¥  ©£§ª¦  ª¢  ª«ª¢©¥  

²���� Electronics ©¦ª£¦  ©¦¤¥  ©¦¤¥  ¥«£¨¤¨  

²������ Kelon §¥¨¢  ¨©¤©¤  ªª§  ª«¢¥¥£  

��± Multimedia ©£¢¥¦  ª¥ª§¢  ¨¥§  ¨«§§ª¨  

µ�¶� Little Swan £©¦¢  ©¤§¨  ¦¢¨  ©«¢ª¨£  

²���� Meiling §¥¤¨  ¦¤¦  ©¤§  ©«ª¢¤©  

°��� ��� Highly §©©¥  ¨©¥¥  ©§¦  ©«©¨¢¦  

¯��·���  Supor ¦¨£ª  ©©¨§©  ¦§¥  ¤«££¨  

¯��·���  Chint ¨¢§  ©©ª¥  ª¦  ©«©¢¤§  

¸�� ���¹�������º ³� refer to these 18 companies as F1-F18 in the above order. 

Efficiency results for these companies based on the CCR model, GEEFCCR models 

and our proposed models are in Table 4. 
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Table 4 Evaluation results based on three different approaches 

»¼

U 
½½¾ ¿odel  

ÀÁÁÂ½½¾

model
 ÃÄÅÆÅÇÈÉ ¿ÅÉÈÊs in this paper 

ÇËÅÄÈ 
ÄÌÍ

k 
ÇËÅÄÈ ÄÌÍÎ 

ÁÏÏiciency 

ÐÍÑÈÄÒÌÊ

¾ÌÍÎ

ÐÍÑÈÄÒÌÊ
ÉÅ¿ÐÍÌÑÈÉ ÓÔ

ÂÕ 
Ö×ØÕÙ

2  
Ú Õ×ÕÛÜÙ  Ý ÞÕ×ÖÙÕÛß Õ×àÝØÚá [4, 9] ØßÕÕ

Âà 
Ö×ØØÙ

6  
Ü Õ×àÛâà  â ÞÖ×ÚÛÝÝß Õ×ÛÜÖàá [2, 10] ÕÕ

ÂÛ 
Ö×âÚÚ

5  
Õâ Õ×ÕÖÕÝ  Ø ÞÖ×ØâÕÚß Õ×àÝÙÚá [4, 13] àßÕÕ

Ââ 
Ö×ØÕÛ

4  
ÕÖ Ö×ÙØàÝ  Õâ ÞÖ×ÙàÚÝß Õ×âÚÚÖá [5, 16] ØßÜßÕÕßÕâ

ÂÝ 
Ö×ÛÖÝ

5  
ÕÙ Ö×ÙàâÖ  ÕÝ ÞÖ×ÕÛÚÜß Ö×ÙâÚÛá [14, 17] ÕßàßÛßØßÜßÕÕßÕÛßÕâßÕÝßÕØ 

ÂØ 
Õ×ÖÖÖ

0  
Õ Õ×ÚÙÙÖ  à

ÞÕ×ÕØÜÜß

12.9379]
[1, 6] ã 

äå 
æçèéê

3  
éë æçëììè  éí îæçïåëðñ æçíïíèò [10, 18] éñïñèñêñëñíñééñéêñéìñéë

äí 
éçæææ

0  
é éçæðíè  å îéçæíêêñ ïçïïåæò [1, 8] ë

äð 
æçìëê

9  
éé æçíééê  éè îæçëèéèñ éçéíèåò [8, 15] éñïñëñíñéé

äéæ 
æçïðé

5  
éí æçëðæè  éë îæçæïëêñ æçåéêæò [15, 18] 

éñïñèñêñìñëñíñðñééñéèñéêñéìñ

16

äéé 
éçæææ

0  
é ïçêêïï  é îéçìííðñ ïçìððéò [1, 4] ó 

äéï 
æçëðè

4  
å éçæïðê  í îæçéìïèñ éçíæïèò [2, 18] éé

äéè 
æçèðå

7  
éì æçðìíð  éé îæçïðæìñ éçæèèåò [9, 15] éñïñèñëñíñéé

äéê 
æçíêê

5  
ë éçïðéæ  è îæçíðèèñ íçåíéíò [2, 11] ë

äéì 
æçìïð

0  
éè éçææêå  ð îæçïíêíñ éçåæéíò [5, 15] ëñééñéê

äéë 
æçìêí

9  
éï æçðððë  éæ îæçêðêíñ éçðåëèò [4, 14] ëñééñéê

äéå 
éçæææ

0  
é æçíåéæ  éï îæçêåðìñ ïçéðèæò [1, 18] ó 

äéí 
æçðèê

7  
ì æçëíèë  éå îæçìëéðñ éçððìïò [3, 16] ëñíñéé
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ôõö ÷öøùúû øùüýþú ÷õùÿs that the four DMUs F6, F8, F11 and F17 are 

CCR-efficient while others are inefficient. The third column shows that F11 is the best 

in the CEEFCCR model. The last column shows that F6, F11 and F17 are not 

dominated by any other DMUs, but the CCR-efficient F8 is dominated by F6. 

Interestingly, all three approaches regard F10 as the worst DMU, which is dominated 

by all others except F12. 

In addition, we find that the efficiency of each DMU based on the GEEFCCR 

approach is a scalar value within the interval which is defined by the minimal or 

maximal efficiencies based on the proposed approach in this paper. The analogous 

result also holds for the rank of each DMU based on the two approaches. In particular, 

these results can be attributed to the fact that GEEFCCR approach evaluates DMUs 

just based on just one feasible equilibrium efficient frontier, disregarding other 

equally feasible equilibrium efficient frontiers.   

 

 

Figure 3 Rank intervals for 18 companies.  

The rank intervals and dominance relations show that there are no domination 

relations among F6, F11 and F17, indicating that DMUs may perform quite 

differently for different equilibrium efficient frontiers. From Figure 3, we see that the 

rank of each firm in the GEEFCCR method is included in the corresponding ranking 

interval calculated based on all feasible equilibrium efficient frontiers. However, the 
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n
n�
�inated F17 can have the worst rank 18 when some equilibrium efficient 

frontiers are chosen, even though it is efficient in the the CCR model. In constrast, the 

rank of F11 can be the best one but never worse than 4, and thus it is more robust than 

F6 and F17 based on efficiency ranks, although F6, F11 and F17 are all 

nondominated. 

Figure 3 shows that F2, F12, F14 are CCR-inefficient, but they could be the 

second best DMUs for some feasible equilibrium efficient frontiers. Another result is 

that F1 ranks 9
th

 based on the CCR model, while it can assume ranks in the range 

from the 4
th

 to the 9
th

 based on the proposed approach in this paper.  

6. Conclusion and Future Research 

In this paper, we have developed several models to calculate the efficiency and rank 

intervals as well as dominance relations for DMUs which produce fixed-sum outputs. 

In contrast to previous approaches, these results are based on the consideration of all 

feasible equilibrium efficient frontiers instead of a single efficient frontier. We have 

compared our models with previous approaches, evaluating them by using the dataset 

in Yang et al. (2011) to show that they offer more informative results. We have also 

applied them to evaluate the performance of appliance industry companies of China in 

2012 more comprehensively than what would be permitted by CCR and GEEFCCR 

models, providing evidence on the usefulness of our methodological research. 

However, we have not considered undesirable fixed-sum outputs such as 

hazardous waste and noise. Therefore, the development of models for undesirable 

fixed-sum outputs calls for further research. Another direction for continued research 

direction is that of extending the proposed models to situations where the assumption 

of constant returns to scale needs to be replaced by variable returns to scale. 
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A����� A� 

Model (2) is a nonlinear model. Yang et al. (2015) transform it to be a linear one 

by two steps. In the first step, they set ���� = ����� and obtain the model (A1): 

Min   !δ′$%!
&

$'(

)

%'(
 

*. +.  ,-/-�
0

-'(
−  2343�

5

3'(
+  7��8�� + �′��9 = 0   

<

�'(
∀?, A, +, B 

 δ′$% = 0    
)

%'(
∀t                       (A1) 

 2343� ≥ H
5

3'(
∀B 

w$f$% + δ′$% ≥ 0,    ∀t, j 

uI, vJ, w$ ≥ 0, δ′$% free, 

where C in the model (A1) is a positive constant that guarantees the denominator 

∑ ������� !  in the model (2) is positive and thus guarantees that the objective function 

of model (A1) must be positive; otherwise, this function is zero. 

In the second step, they set "#� = !
$ (|%#�& | + %#�& ) and '#� = !

$ (*%#�& * − %#�& ) (see  

Si et al., 2013) so that Model (A2) is transformed to  

-./ 0 0("#� + '#�)
1

# !

2

� !
 

3. 5. 0 6787�
9

7 !
− 0 �����

�

� !
+ 0:;#<#� + "#� − '#�> = 0   

1

# !
∀., C, 5, D 

0("#� − '#�)
2

� !
= 0      ∀5                 (E2) 

0 ����� ≥ H
�

� !
∀D 

;#<#� + "#� − '#� ≥ 0      ∀5, D 

67 , �� , ;#, "#� , '#� ≥ 0. 
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�������� �� ���� � !"����# $ 

By Yang et al. (2015), we know that Model (2) is always feasible, and thus the 

optimum ���∗, ��∗ ,  !∗, "!#∗ $(∀&, ', ), *) exists. At this optimum, the objective function 

obtains its maximum value and all constraints in Model (2) hold so that  

- -  !∗."!#∗ .
/

!01
=

2

#01
34)&∗ 

∑ ��∗6�#7�01 + ∑  !∗(9!#∗ + "!#∗ )/!01
∑ ��∗:�#;�01

= 1    ∀* 

- "!#∗
2

#01
= 0      ∀)                                           (2′) 

9!#∗ + "!#∗ ≥ 0      ∀), * 

��∗ , ��∗,  !∗ ≥ 0, "!#∗  9'CC. 
A comparison of Models (2’) and (5) shows that these two models have the same 

constraints and ���∗, ��∗ ,  !∗, "!#∗ $(∀&, ', ), *) also satisfies all the constraints of Model 

(5). Therefore, ���∗, ��∗ ,  !∗, "!#∗ $(∀&, ', ), *) is a feasible solution of Model (5), too.  

 

Appendix C. Proof of Theorem 2 

Theorem 2: Each DMUk’s efficiency is continuous in an interval[-./�0, -.
/12]. 

For any efficiency value of DMUk on all feasible equilibrium efficient frontiers 

- = -3 , ∀-3 ∈ [-.
/�0, -.

/12] , the feasible solution to model (6) is denoted as 

���
∗, ��

∗ ,  !
∗, "!#

∗ , ∀&, ', ), * $ . Here, -3 = ∑ ��
∗7�.

8
�9: + ∑  !

∗<!.
>
!9: . 

This theorem is proven in three steps: 

(i) ?@ = ?A
BCD. 

Let  -E = -3 + ∆-, ∆- > 0, -E ∈ [-.
/�0, -.

/12] , ��
E = ��

∗(-3 + ∆-)/-3 , 

 !
E =  !

∗(-3 + ∆-)/-3 , "!#
E = "!#

∗ -3/(-3 + ∆-) , then 

(��
∗, ��

E ,  !
E, "!#

E , ∀&, ', ), * ) is the feasible solution to model (6) for - = -E 

when Δ- → 0 , because -E = ∑ ��
E 7�.

8
�9: + ∑  !

E<!.
>
!9:  and the solution 
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s%&'s(')s %** &+) ,-.s&/%'.&s -( 0-2)* 3456 s7,+ %s8 

� � ������ � �
!

�"#
=

$

 "#
� � ��∗��� ∗ �
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�"#
=

$

 "#
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� �� �
$

 "#
= � �� ∗
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 "#
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� 23∗435 = 1
7

3"#
 

8� + �� � =   8� + �� ∗  ∗ +,
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� BC� DC 
E
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− � 23∗43 

7

3"#
+ � ���(8� + �� � )

!

�"#
 

=   � BC∗DC5
E

C"#
I1 + ∆+

+,
J − � 23∗43 

7

3"#
+ � ��∗8� I1 + ∆+

+,
J

!

�"#
+ � ��∗�� ∗

!

�"#
  

=   (� BC∗DC5 + � ��∗8� )
!

�"#
∗ ∆+

+,
+ � BC∗DC5

E

C"#

E

C"#
− � 23∗43 

7

3"#
+ � ��∗(8� + �� ∗ )

!

�"#
  

= (� BC∗DC5 + � ��∗8� )
!

�"#
∗ ∆+

+,

E

C"#

∆9→,     ∀A 

Thus, each DMUk’s efficiency on all feasible equilibrium efficient frontiers is 

right continuous at the point +573$. 

(ii) KL = KMNOP 

Let  +� = +, − ∆+, ∆+ > 0, +� ∈ [+573$, +57ST] , BC� = BC∗(+, − ∆+)/+, , 

��� = ��∗(+, − ∆+)/+, , �� � = �� ∗ +,/(+, − ∆+) , then 

(23∗, BC� , ���, �� � ), ∀*, V, ), A  is the feasible solution to model (6) for + = +� 

when Δ+ → 0 , because +� = ∑ BC� DC5EC"# + ∑ ���8�5!�"#  and the solution 

satisfies all the constraints of Model (6) such as 

� � ������ � �
!

�"#
=

$

 "#
� � ��∗��� ∗ �

!

�"#
=

$

 "#
& ∗ '()*∗ 

� �� �
$

 "#
= � �� ∗

$

 "#
∗ +,

+, − ∆+ = 0     ∀) 
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!"# + $"#% =   !"# + $"#∗  ∗ '(
'( − ∆'

∆,→(    ∀5, 7 

8 9:% ;:#
<

:� 
− 8 >�∗��#
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B
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B

"� 
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'(

<

:� 

∆,→(     ∀7 

Thus, each DMUk’s efficiency on all feasible equilibrium efficient frontiers is 

left continuous at the point '��EF. 

(iii) GHIJK < GM < GHINO 

First, let  '% = '( + ∆', ∆' > 0, '% ∈ ['���R, '��EF] , 9:% = 9:∗('( + ∆')/'( , 

?"% = TU∗(,VW∆,)
,V

 , $"#% = $"#∗ '(/('( + ∆'), then (>�∗, 9:% , ?"%, $"#% ), ∀X, Y, 5, 7 is the 

feasible solution to model (6) for ' = '%  when Δ' → 0 , because '% =
∑ 9:% ;:�<:� + ∑ ?"%!"�B"�  and the solution satisfies all the constraints of model 

(6) so that 
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Second, let  '> = '( − ∆', ∆' > 0, '> ∈ ['�1/B, '�1CD], *�> = *�∗('( − ∆')/'(, 

� > = FG∗(5HI∆5)
5H

 , 3 "> = 3 "∗ '(/('( − ∆') , then (./∗, *�> , � >, 3 "> ), ∀J, K, L, <  is 

the feasible solution to model (6) for ' = '>  when Δ' → 0 , because 

'> = ∑ *�> ���,�$% + ∑ � >! �# $%  and the solution satisfies all the constraints of 

Model (6) such as  
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,
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Thus, each DMUk’s efficiency on all feasible equilibrium efficient frontiers is 

continuous at every point in the interval ['�1/B, '�1CD]. 
In summary, Each DMUk’s efficiency is continuous in an interval ['�1/B, '�1CD], 

completing the proof of Theorem 2. 
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