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Efficiency Intervals, Rank Intervals and Dominance

Relations of Decision-Making Units with Fixed-Sum Qutputs

Y. Li, M. Guo, L. Liang and A. Salo

Abstract:

How to evaluate the performance of decision-making units (DMUs) with fixed-sum
outputs is a challenging question in data envelopment analysis (DEA). Recently, this
challenge has been addressed by determining the common equilibrium efficient
frontier; but because there can be several feasible equilibrium efficient frontiers, it can
be difficult to provide valid results. To address this problem, we consider all feasible
equilibrium efficient frontiers and develop several models to obtain the corresponding
efficiency intervals, rank intervals as well as dominance relations for DMUs with
fixed-sum outputs. We illustrate the proposed approach with two numerical examples

and show that it gives more informative results than earlier DEA approaches.
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1. Introduction

Data envelopment analysis (DEA) developed by Charnes et al. (1978) is a
nonparametric approach to measure the performance of peer decision-making units
(DMUs) with multiple inputs and outputs. Because DEA models such as CCR
(Charnes et al., 1978) and BCC (Banker et al., 1984) are simple and can be readily
solved, DEA has been employed in many areas, including efficiency analyses of
Olympic Games (Lozano et al., 2002; Li et al., 2008; Lei et al., 2015), banks (Kao and
Liu, 2004; Camanho and Dyson, 2005; Alireza et al., 2017), environments (Dai et al.,
2014; Lozano and Sebastian, 2017; Burdon and Li, 2019) and hospitals (Zhang et al.,
2011; Du et al., 2014), among others.

However, Dyson et al. (2001) pointed out several pitfalls in applying DEA. One
of them is called “exogenous and constrained factors”', referring to situations in
which some factors controlled by DMUs are constrained by the scale used, such as
percentages. For example, the market share commonly used as an output in
performance evaluation is fixed (Yang et al., 2014), because the total is 100%.
Analogously, in the performance evaluation of nations in Olympic Games, the sum of
gold (silver or bronze) medals is fixed so that if one country gets more of them, others
get less (Lins et al., 2003; Wu et al., 2009; Du et al., 2018). In this paper, we call these
kinds of factors or outputs as fixed-sum outputs. Dyson et al. (2001) suggested two
approaches for addressing them: (1) using input-oriented DEA models and (2)
developing new DEA approaches that satisfy fixed-sum constraints of outputs.

The first approach does not seem suitable when using inputs such as gross
domestic product (GDP) and population, for instance. In the input-oriented DEA
model, inefficient DMUs would need to improve their efficiencies by reducing their
use of inputs; but the aim of reducing GDP or population would be ridiculous (Lins et
al., 2003; Li et al., 2008). Consequently, several authors approach this pitfall based on
the second approach. For example, Lins et al. (2003) were the first to propose a zero

sum gains (ZSG) DEA approach which they applied to evaluate the performance of

'For details, readers can refer to Pitfall 5.4 in Dyson et al. (2001).
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countries in the 2000 Sydney Olympic Games. Zero sum means that the sum of
outputs’ (gold, silver or bronze medals) adjustments across all participating nations is
zero. Lins et al. (2003) propose two adjustment strategies, the equal reduction strategy
and the proportional reduction strategy, whereby adjustments in first strategy can lead
to negative outputs while those in the second cannot. Because the ZSG-DEA model
with the second adjustment strategy is nonlinear, Bi et al. (2013) transformed it into a
linear one. The resulting ZSG-DEA model has been applied to measure the
performance of DMUs producing undesired outputs (Gomes and Lins 2008; Chiu et al.
2013). It has also been extended to a non-radial ZSG-DEA model (Fonseca et al. 2010)
as well as to a fixed-sum outputs DEA (FSODEA) model based on minimizing output
adjustments across all DMUs (Yang et al. 2011). Wu et al. (2014) apply the FSODEA
model to measure environmental efficiency with undesirable fixed-sum outputs.

Yang et al. (2014) found that the novel ZSG-DEA model and its extensions such
as the FSODEA model evaluate DMUs based on different efficient frontiers. This
means that DMUs are, in effect, evaluated based on different evaluation platforms,
making it hard to compare the efficiency results from these models. Therefore, Yang
et al. (2014) proposed an equilibrium efficient frontier data envelopment analysis
(EEFDEA) approach in which all DMUs are evaluated based on a common efficient
frontier; but this approach can be very demanding computationally, because
determining the efficient equilibrium frontier may require a large number of steps
especially when the number of DMU s is large. Yang et al. (2015) therefore proposed a
new approach which can generate a common equilibrium efficient frontier in a single
step. However, the equilibrium efficient frontier based on Yang et al. (2014) and Yang
et al. (2015) may not be unique. Fang (2016) attempted to achieve a unique
equilibrium efficient frontier via a secondary goal approach. Zhu et al. (2017) showed
that this approach cannot ensure that the equilibrium efficient frontier is unique and
consequently sought to improve it through additional constraints such as assurance
regions (AR-I type).

While the above approaches are helpful in choosing a unique equilibrium

efficient frontier, they have two main drawbacks. First, in many applications there are
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no clear principles for how these additional constraints should be generated and, even
if such constraints are introduced, it is difficult to test the uniqueness of the resulting
equilibrium efficient frontier. Second, these approaches evaluate DMUs just based on
a single feasible equilibrium efficient frontier, neglecting other feasible frontiers and
their implications for efficiency analysis.

These observation motivate a new research question: Is it possible to evaluate all
DMUs based on all feasible equilibrium efficient frontiers? This question is
challenging because there can be an infinite number of feasible equilibrium efficient
frontiers so that it is impossible to enumerate them all. Furthermore, because the
equilibrium efficient frontier based on the generalized equilibrium efficient frontier
data envelopment analysis (GEEFDEA) approach may be not unique, results
concerning the efficiency of DMU may vary greatly depending on which one of the
equilibrium efficient frontiers is selected. In this paper, we develop several models to
address this question and apply them to obtain robust efficiency results, including
rank intervals as well as dominance relations among all DMU .

The structure of this paper is as follows. Section 2 reviews the GEEFDEA
models and Section 3 presents models for establishing ranking interval and dominance
relations. Section 4 illustrates the proposed efficiency measures based on a small
dataset from the literature. Section 5 applies the proposed models to measure the
performance of appliance industry companies. The last section concludes with
suggestions for future research directions.

2. GEEFDEA Models

We first introduce the GEEFDEA approach proposed by Yang et al. (2015) for finding
a common equilibrium efficient frontier for the evaluation of all DMUs. This
approach consists of two models. One generates a common equilibrium efficient
frontier and the other evaluates each DMU based on this frontier.

Assume that there are » DMUs and each DMU consumes m inputs x;;, i = 1,...,m,
Jj =1,...,n to produce s variant-sum outputs y,;, » = 1,2,...,s and / fixed-sum outputs f;,

t =1,...,1. The variant-sum outputs are freely disposable while the fixed-sum outputs
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satisfy the constraints Y7_; f;j = Fi,t = 1,...,1 where F, is a constant.

The first model in the GEEFDEA approach is
l

n
min Z Z Wiy
j=1

t=1

- Yy W Yrj + Xiea We(fyj + b)) _
X viXij

n
Z 5, =0 Wt 1)
=1

agj = max{Stj,O}, vt,j

1 vj

fej+6:=0, Vt,j

U, Vj, we = 0, 6tj free,

where u,, w; and v; represent weights of the variant-sum output y,, the fixed-sum
output f; and the input x;, respectively. The term J;; denotes the #-th output adjustment

of DMU; and it can be positive, negative or zero. Model (1) can be transformed to the

following
l
minZZwt|6tJ-|
j=1t=1
ot Zf‘zluryrj + Z£=1 Wt(ftj + 5tj) —1 vj
2itq ViXij

n
Z Sy =0 Wt ©)
j=1

fij+8:;=0, Vtj

Ur, v, Wy 2 0,6, free.

This nonlinear model can be transformed into a linear one with the algorithm in Yang
et al. (2015). Models (1) and (2) characterize the equilibrium efficient frontiers in one

step. For details, readers are referred to Appendix A.

Suppose the optimal solution of J,; in model (2) is G:j,t =1,..5Lj=1,..,n

Then each DMU; adjusts its fixed-sum output from f;; to f; + 6, t=1,..,1
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while keeping its inputs and variant-sum outputs unchanged. These adjusted DMUs
have a common equilibrium efficient frontier, because they are all efficient by the first
set of constraints in Model (2).

Based on the common equilibrium efficient frontier, Yang et al. (2015) evaluate
performance of DMUs by solving the optimization problem

m
GEEFDEA ; Liz1 ViXik
ex = Min 7
Zr=1 UrYrk + Zt:l Wt ftk

Yin1 ViXij

s.t. =1
215:1 uryrj + 25::1 Wi (ftj + 5;])

vj (3)

U, vy, we =20, Vr,t,10,
where §;;,Vt,j is the optimal value of d; in Model (2). These constraints ensure that

all DMUs are evaluated based on a common equilibrium efficient frontier.

However, the equilibrium efficient frontier based on Yang et al. (2015) may not
be unique (Fang, 2016; Zhu et al., 2017). To see this, suppose that the optimal value
of the objective function in Model (2) is opti *. Then, all equilibrium efficient frontiers

are characterised by the equations

1
ZZthStjl = opti”

j=1t=1
Yr=1 UpYrj + Z%=1 Wt(ftj + 6tj) .
- =1 Vj
Xty ViXij
n
Z ;=0 Wt 4)
j=1

ftj+6:;=0 Vi,

U, v, Wy = 0,6 free.

In Model (4), there are m+s+/+n*/ variables to be determined, but only n+/ equality
constraints. Therefore, there is considerable flexibility in choosing &;;,V ¢t,j and
consequently there can exist multiple equilibrium efficient frontiers. Zhu et al. (2017)

propose a series of models for calculating the minimal and maximal 6§j,‘v’t, j for
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*

DMU;. Their numerical examples show there are multiple solutions &; Ve, j as well

as multiple equilibrium efficient frontiers.

For the convenience, we introduce the notations u = (uy,..,us)’, w=
(W, e, )T, v = Wy, o, v)T, 0= (8,;), V¢, j. Then, the feasible set of solutions for

Model (4) can be represented as

S ={(u,v,w, 8)|u,v,w,§ satisfy Model (4)} (R1)
Because this set S contains all feasible equilibrium efficient frontiers, we can evaluate
all DMUs by calculating their efficiency intervals, rank intervals and dominance
relations over the set S regardless of how many feasible equilibrium efficient frontiers
there are.
3. Models for Efficiency, Rank Intervals and Dominance Relations
3.1.Efficiency Intervals
According to Podinovski (2001), the efficiency of DMUjy can be defined as

E.(u,v,w,8) = Zruryzrk;f“”tf % and (uv,w,8) €S. (R2)
iVitik

Because there can be multiple equilibrium efficient frontiers, the efficiency of each
DMU based on Model (3) can vary depending on which frontier is being considered.
Here, we adjust Model (R2) to calculate the minimal and maximal efficiency values of

each DMU as

Y=t UpYrk + Zé=1 Weftk

max/min

i ViXik
n 1
s.t. Zwt|6tj| = opti*
j=1t=1
i WYy + Xiey We(fej + 6¢)) 1 vi
Xty ViXij a /
n
Z 5, =0 Wt (5)
j=1

fej+6,;=0 Vt,j
Ur, v, Wy = 0,6, free.

The objective function in Model (5) establishes the minimal and maximal efficiencies
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for DMUj subject to constraints in the same way as in Model (4), considering all
possible equilibrium efficient frontiers. As stated in Theorem 1, Model (5) has a

feasible solution always (see Appendix for a detailed proof).
Theorem 1: Model (5) is always feasible.

Model (5) is nonlinear. We first use Charnes—Cooper transformation (Charnes and

Cooper, 1962) by setting Z; =d, vi=d*v, ur =d=*u,., we =d *w; and

i=1 ViXik

transform it into

s l
max/min(z UpYrk + Z We fir)
t=1

r=1

l
Zwt|6tj| =d * opti*

1t=1

U)
~+
M:

-
1l

m
uryrj Z lelj + Zwt(ft] + 5t1) =0 V]

1

r=1 i=1 =

n

z 5, =0 Wt (6)
=

m

Z VX = 1

[y

L=

fej+6,;=0 Vt,j

Ur, Vi, Wi, d = 0, &y free.

Second, we set & ; = w6;; and obtain the model

max /mm(z UpYr T Z Wt fir)

r=1
n l
s.t.ZZ|8§j| =d * opti”
j=1t=1
s m
Zuryrj _Zv xl] +Z(Wtft] + 8 ) =0 V]
r=1 i=1 t=1
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§y=0 Vvt (7
j=1

m

Z ViXipe =1

i=1

Uy, Vj, Wy, d = 0, 8;1- free.

Third, we set ag; = (I8¢ +8;;) and by; == (|8(;] = 8;;) (Si et al., 2013),

and transform Model (7) into

N

1
max/min( ) W Yrr + Z We fti)
1 t=1

r=

l
.t.z Z(at,- + byj) =d * opti*

S
j=1t=1
S m l
UrYrj — z vixij + ) Wefej+agg — b)) =0 Vj
r=1 i=1 t=1
n
Z(atj —b)=0 vt (8)
=1
m
Z ViXik = 1
i=1

Wtft]‘l'at]_btj 20 Vt,]
Uy, Vi, Wy, d, agj, bej = 0.

Denote the best and worst efficiencies of DMU; as e[*** and e[™", respectively.

Therefore, the efficiency of DMU; belongs to the interval [e[™",eM™**] when
considering all feasible equilibrium efficient frontiers. In addition, we have the
following theorem.

Theorem 2: The efficiency of DMUj assumes all values in the interval [e*™, e/4¥].

By Theorem 2, the DMU}’s efficiency is not unique and thus its efficiency rank

relative DMUs may vary greatly. However, if the efficiency intervals of two DMUs do
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not overlap, then their relative ranks can be determined conclusively. For example, if
DMUT’s efficiency interval is [0.5, 0.8] and that of DMU?2 is [0.9, 1.0], then DMU?2
should have a higher rank than DMU1. However, in many cases the DMUs’ efficiency
intervals may overlap, which can be addressed as suggested in the following
subsection. We also note that in the efficiency evaluations based on Model (5), the
constraints are the same as in Model (4), and thus the DMUs are evaluated based all
on equilibrium efficient frontiers.

3.2 Rank Intervals

This subsection proposes a series of models to calculate the rank interval of each
DMU. Based on Salo and Punkka (2011), we define the sets

Ry (w,v,w,8) ={p e {1,...,.n}|E,(w,v,w,8) > E,(w,v,w,8)}, (w,v,w,5) € S}

Ri(w,v,w,8) = {p € {1, ...,n\{K}|E,(w,v,w,8) = Ex(u,v,w,8)}, (w,v,w,8) €S},

where R,?(u, v,w,8) contains other DMUs whose efficiency is strictly higher than
that of DMUy, while those whose efficiency ratios are at least as high that of DMUj
are included in R (u,v,w,§).

Correspondingly, the best and worst efficiency ranks are 1, (u,v,w,8) =1+
IRy (w,v,w,8)| and rZ(u,v,w,8) =1+ |RZ(u,v,w,8)| (where |R| denotes the
number of elements in the set R). The difference between 7 (u,v,w,8) and
1 (u,v,w,8) is that if DMU; and DMU, are the two DMUs with the highest
efficiency ratio along all DMUs, then the former rank them both as first, but the latter
ranks them as second.

The bounds of ranking interval [r{™", r"**]for DMU; are

min

—_ ; > max __
T = MiNgpwe)es Tk (u,v,w,§) and ry,

>
= MaXy,yw,s)es e (U V, W, 6).

Here, we propose the following model for calcultating the best (highest) ranking ™™

it = min |1 +Zzp]

p*k

l
S. t.z z Wt|5tj| = opti*

j=1t=1
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r=1 UpYrj + Z{“zl Wt(ftj + 5tj) _

1 vj
Xt ViXij
n
=
ftj + 6tj >0 Vt,j 9

l
Xr=1 UpYrp + D=1 Wtftp — Hz, < Yr=1UrYrk T Zé=1 Weftk
ity ViXip a ity ViXik

z, €{0,1}, Vp€{l,..,n}\{k}

vp € {1, ..., n}\{k}

Ur, Vy, W, Qgj, bej = 0.

In Model (9), the first four sets of constraints are the same as in Model (4),
ensuring that all possible equilibrium efficient frontiers are considered. The fifth set of
constraints (where H is a large positive constant) treat DMUj as a benchmark and
check whether DMU,’s efficiency is strictly smaller than other DMUs’ such that
Ex(u,v,w,8) < E,(u,v,w,8),p € {1, .., n}\{k}. If Ex(u,v,w,6) < E,(u,v,w,§),
then z, = 1, but otherwise Model (9) has no feasible solutions. In this case, each
DMU, such that E(u,v,w,6) < E,(u,v,w,6),p € {1,...,n}\{k} has a higher rank
than DMU;. Therefore, the optimum value for Model (9) gives the best efficiency
rank r,gni" for DMU;.

Similarly, we calculate the worst (lowest) rank r;*** of DMU; by solving the

optimization problem

e =max [1+ Z Zp]

p*k
l
s.t. z z wt|6tj| = opti”*
j=1t=1
=1 UyYrj + th=1 Wt(ftj + 5tj) .
— =1Vj
Xt Vixij
n
j=1
ftj+6,;=0 Vt,j (10)
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Yre1 UpYrp + Lo Wefip + H(1 = 2,,) _ Lr=a Uy t Y1 Wefer
it ViXp B ity ViXi

z, €{0,1}, Vp€{l,..,n}\{k}

Uy, Vi W, Qgj, bej = 0.

vp € {1, ..., n}\{k}

In Model (10), the fifth set of constraints again treats DMUj as a benchmark and
checks whether DMUj’s efficiency is equal to or smaller than other DMUSs’ such that
Ex(u,v,w,8) < Ep(u,v,w,8),p € {1, ..,n}\{k}. If Ex(u,v,w,6) < E,(w,v,w,6),
then z, = 1; otherwise, Model (10) does not have a feasible solution and any DMU,,
such that Ey(u,v,w,6) < E,(u,v,w,8),p € {1, ...,n}\{k} should have a higher
rank than DMU;,. Therefore, the solution to the Model (10) gives ry***, the worst
efficiency rank for DMU;.

Models (9) and (10) are nonlinear and thus optimal values can be hard to obtain.
Salo and Punkka (2011) linearize their rank-based models in effect by setting
Ey(u,v,w,8) = 1. However, we cannot set Ej(u,v,w,8) = 1, because this could
violate the second set of constraints.

We therefore transform the two nonlinear models into linear ones as follows.
Take Model (9) as an example and set Ej (u,v,w,§) = h. Based on Theorem 2, we
know that 4 belongs to [e[*™™, e4*]. Thus, we transform the fifth set of constraint in
model (9) into three parts as follows:

() = min[ 1+ Z zp]
p#k
n 1
D (@ +by) —dC* =0

1t=1

m
zuryrj - z ViXij + Z(Wtftj +ag; — btj) =0 Vj

l
r=1 i=1 t=1

S.t.

~.

N
n
j=1

S m l
Z UpYrp — hz ViXip +z Wefep —Hzp, <0 Vp € {1, ..., n}\{k}
1 i=1 t=1

r=
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vixg =1

R

~
1l
=

l
UrYrk +':E:‘th%k:: h
t=1

||MV)

<
[y

z, €{0,1}, Vp€{l,..,n}\{k}

Ur, Vi, Wy, Qgj, bej = 0.

Model (11) can be regarded as a linear model with the parameter h € [e[*", el"%*],
and a heuristic search algorithm is proposed to calculate the best rank of DMUj
M = min (™" (h)| h € [e™™, e***]} as follows:

Set h = e** — k X &, where ¢ is the step size of the heuristic search algorithm
and k=0,1,2,..,[k™*]+ 1. Here, [k™**] is the largest integer value of
(el"®* — My divided by the step size e. In the iterative process of solving the
model (11), we increase k from its initial value 0 to [k™?*] + 1 with the step size ¢
and compute the corresponding ™" (h) for each h. After check each k, we obtain
the best rank ™" = min {r""*(h)| h € [e]*", e"**]}.

Similarly, model (10) can be transformed to

e *(h) = max [1 + z Zp]

p*k

l
Z(at, +by) —dC* =0

1t=1

m
Z UrYrj — vau +Z(Wtft] +ag; — blfj) =0 Vj
i=1 t=1

’r:

(/]
ﬁ
M:

~.
1l

NgERi

~.
[y

N

m l
—Z UpYrp + hz ViXip —Z Wefep + Hzy < H Vp € {1, ..., n}\{k}
t=1

r=1 i=1

m
Z vixg =1

i=1
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N

l
:E:ury?k4':E:W%ﬁk =h
t=1

r=1
z, €{0,1}, Vp€{l,..,n}\{k}
Uy, Vi, W, Qg j, bej = 0.
Model (12) is a linear model with the parameter h € [e[™", el"**], and the worst rank
of DMUy is 7" = max {r["**(h)| h € [e]™", e9*]}. Therefore, we can calculate
the best (r"™) and worst (r"**) ranks for each DMU considering all feasible
equilibrium efficient frontiers.
3.3 Efficiency Dominance
This subsection explores dominance relations among DMUs. We first extend the
definition of efficiency dominance (Salo and Punkka, 2011) so that:
DEFINITION 1. DMU; dominates DMUj, (denoted byDMU,, > DMUy,) if and only if
Ex(w,v,w,8) = Eg(u,v,w,d) forall (w,v,w, 6)eS
Ex(u,v,w,8) > E;(u, v,w, 8) for some (u, v, w, §)€S.
This means that if DMU; dominates DMUj,, then the efficiency of DMU; must not be
lower than that of DMUj, for any feasible equilibrium efficient frontier and that it has
to be strictly higher for some frontier. As shown by Salo and Punkka (2011), this
dominance relation among DMUs is irreflexive, asymmetric and transitive.
We explore the dominance relation in Definition 1 by considering ratios between

the efficiencies of DMU; and DMUj, by defining

Ek(uleNla)

S\ VU, W, 0) .
Eg(u.v,w,6)’ (w,v,w,6)eS (13)

Dhg(uleyla):=

Because there are many feasible equilibrium efficient frontiers in S, we can calculate
the maximum and minimum values of Dy 4 (u,v,w,8), denoted by Bk,g and Dy g,

respectively, as follows:

S

1
max/min [Z UrYrg t Z Weful/h
t=1

r=1

l
$.6. ) (@ + byy) = dC" = 0

j=1t=1
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Zuryr] Zv [ Xij +Z(Wtft] +a;; — bt]) =0 Vj

"
Zat] b)=0 vt

m

Z vixg =1

i=1

S m l
z UrYrg — hz ViXig + Z Wtftg =0
r=1 i=1 t=1

Ur, Vi, Wy, Agj, bej = 0.

In Model (14), DMU, serves as a benchmark whose efficiency is set to
E;(u,v,w,8) = h, h €[e]'™, e***]. Thus, Model (14) can be treated as a linear one
with a parameter / so that we can use an similar algorithm similar to that for Model

(11) to calculate Bk’g and Dy 4, respectively. For instance, if Bk’g = 1.33 and

Dy 4 = 1.18, the efficiency of DMUy can be at most 33% but not less than 18%
greater than that of DMU,. Specifically, DMU; dominates DMU, if the minimum
value Dy 4 > 1 orif Di, =1 and Ek,g > 1; otherwise, DMU; does not dominate
DMU,. Thus, for example, if , there is no dominance for the two DMUs.

4. Dataset from Yang et al. (2011)

This section illustrates the above models and compares them with CCR and
GEEFDEA methods. We first revisit the data set in Yang et al. (2011) on 6 DMUs

which produce a single fixed-sum output (see Table 1).

Table 1 Dataset from Yang et al. (2011).

DMU A B C D E F
Input 1 1 1 1 1 1
Unfixed-sum output 1 3 1 3 5 2 5
Fixed-sum output 2 3 4 1 1 2 2
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Table 2 shows the results based on CCR model, GEEFCCR model and the models
proposed in this paper. The second column shows that DMUs A4, B, D and F are
efficient based on the CCR model and they have the same rank. The third column
shows the results for GEEFCCR models, indicating that there are some efficient
DMUs whose efficiencies exceed 1 with the rank ordering F > 4 > D >B. However,
the DMUSs’ efficiency scores and ranks based on GEEFCCR models are calculated by
choosing only one feasible equilibrium efficient frontier, even if there are many
feasible equilibrium efficient frontiers so that the DMUs’ efficiency scores and ranks

may vary greatly depending on which efficient frontier is chosen (Fang, 2016; Zhu et

al., 2017).
Table 2 Results based on three models.

DMU CCR model GEEFCCR model Proposed models in this paper

score rank score rank eff interval ranking interval ~ dominated by
A 1 1 1.1429 2 [1.1077,1.3846] [2,3] —
B 1 1 1 4 [0.8769, 1.8462] [1,4] —
C 0.6 6 0.7302 6 [0.4615,0.7692]  [5,6] A.B,D.,F
D 1 1 1.0794 3 [0.4615,1.1692] [2,6] F
E 0.6667 5 0.7619 5 [0.7385,0.9231]  [3,6] ABJF
F 1 1 1.2857 1 [0.9231, 1.3385] [1,4] —

The last column shows the efficiency intervals, rank intervals and dominance
relations based on the proposed models by considering all feasible equilibrium
efficient frontiers. First, we see that each DMU’s efficiency based on the GEFECCR
model takes a value which belongs to efficiency interval based on Model (5). For
example, based on GEFECCR model, the efficiency for DMU, is 1.1429, which is in
the efficiency interval [1.1077, 1.3846] given by Model (5).
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Figurel. Rank comparison based on the GEEFCCR method and the proposed

method.

Second, we note that the rank of each DMU under the GEEFCCR method is a
special case of the models proposed in this paper. For example, in the GEEFCCR
method the rank of DMU is 2, which is in the corresponding rank interval [2, 3] for
DMUy (see Figure 1 for details). The orange triangle denotes the rank order of each
DMU based on the GEEFCCR method, while the length of cylindrical shape shows
the rank interval for each DMU based on our models.

Third, the proposed models imply the dominance relations in Figure 2.
Specifically DMUy dominates DMUp, while DMUp, and DMUp both are
CCR-efficient. Still, DMUr does not dominate DMU, and DMUy3, even though it has
the highest ranking under the GEEFCCR method.
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Figure 2. Efficiency dominance relations among DMU .

An interesting finding is that DMU¢ is dominated by DMUj based on the
approach we have proposed even if there is no such dominance relation based on the
approach proposed by Salo and Punkka (2011). Specifically, the outputs of DMUj and
DMU¢ are (1,4) and (3,1), respectively, and consequently neither DMU dominates
the other based on the approach proposed by Salo and Punkka (2011). Moreover, we
find that DMUg is dominated by DMUjp based on our approach. Therefore, our
approach can establish additional dominance relations among the DMUSs based on the
efficiency evaluation with fixed-sum outputs.

Compared to GEEFDEA methods, the proposed efficiency measures help
evaluate DMUs with fixed-sum outputs more objectively and comprehensively. In
addition to efficiency values, rank intervals and dominance relations of DMUs
provide more information about the performance of DMUs in the context of
fixed-sum outputs.

5. Apply to Appliance Industry Companies

This section applies the proposed approach to the dataset on the appliance industry
considered in Yang et al. (2014). This dataset (see Table 3) has 18 appliance industry
companies with two inputs (total assets (million yuan) and number of employees) and

two fixed-sum outputs (profits (million yuan) and market share). The total profit of
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these companies is a constant and the total market share is 100%.

Table 3 Dataset of appliance industry companies of China in 2012

Company Total assets Employees Profits ~ Market share
Guangdong Midea 59550 66497 3699 12.9267
Qingdao Haier 39723 59814 2690 10.2271
GOME 37227 59624 1840 8.7351
Zhuhai Gree 85212 72671 5237 11.5951
Sichuan Changhong 51651 60398 406 7.2199
Suning Appliance 59786 7751 4821 13.0351
TCL Corporation 74014 56190 1013 8.4459
Hisense Electric 16145 15776 1689 3.2660
Skyworth Digital 17762 26000 1039 2.9786
Konka Group 16906 19724 25 2.2516
Haier Electronics 14294 18406 1406 6.9303
Hisense Kelon 7635 31010 227 2.5669
TCL Multimedia 19564 26275 367 3.7723
Wuxi Little Swan 9145 1073 453 1.5239
Hefei Meiling 7603 4048 107 1.2501
Shanghai Highly 7116 3166 174 1.1354
Zhejiang Supor 4392 11371 476 0.9893
Zhejiang Chint 8357 11286 824 1.1507

For convenience, we refer to these 18 companies as F/-F1I8 in the above order.
Efficiency results for these companies based on the CCR model, GEEFCCR models

and our proposed models are in Table 4.
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Table 4 Evaluation results based on three different approaches

DM GEEFCCR
CCR model Proposed models in this paper
U model
ran Efficiency Rank
score score rank dominated by
interval interval
0.617
Fl 5 9 1.1387 5 [1.0713, 1.2569] [4, 9] 6,11
0.667
F2 6 8 12342 4 [0.9355, 1.3802] [2,10] 11
0.499
F3 s 14 1.1015 6 [0.6419, 1.2579] [4,13] 2,11
0.613
F4 A 10 0.7625 14 [0.7295, 1.4990] [5,16] 6,8,11,14
0.305
F5 s 17 0.7240 15 [0.1398, 0.7493] [14,17]  1,2,3,6,8,11,13,14,15,16
1.000 [1.1688,
F6 1 1.9770 2 [1, 6] —
0 12.9379]
0.314
F7 3 16 0.6553 18 [0.2769, 0.8283] [10, 18] 1,2,3,4,6,8,11,14,15,16
1.000
F8 0 1 1.0983 7 [1.0844,2.2270] [1, 8] 6
0.564
F9 9 11 0.8114 13 [0.6313, 1.1837] [8,15] 1,2,6,8,11
0.291 1,2,3,4,5,6,8,9,11,13,14,15,
F10 s 18 0.6903 16 [0.0264, 0.7140] [15, 18] 6
1.000
F11 0 1 2.4422 1 [1.5889,2.5991] [1, 4] —
0.693
F12 A 7 1.0294 8 [0.1523, 1.8023] [2,18] 11
0.397
F13 ; 15 0.9589 11 [0.2905, 1.0337] [9,15] 1,2,3,6,8,11
0.844
Fl14 s 6 12910 3 [0.8933, 8.7818] [2,11] 6
0.529
F15 0 13 1.0047 9 [0.2848, 1.7018] [5,15] 611,14
0.548
F16 9 12 0.9996 10 [0.4948, 1.9763] [4,14] 6,11,14
1.000
F17 0 1 0.8710 12 [0.4795,2.1930] [1,18] —
0.934
F18 ; 5 0.6836 17 [0.5619, 1.9952] [3,16] 6,811
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The second column shows that the four DMUs F6, F8, FII and F17 are
CCR-efficient while others are inefficient. The third column shows that /1 is the best
in the CEEFCCR model. The last column shows that F6, Fil and FI7 are not
dominated by any other DMUs, but the CCR-efficient F§ is dominated by F6.
Interestingly, all three approaches regard F'/0 as the worst DMU, which is dominated
by all others except F12.

In addition, we find that the efficiency of each DMU based on the GEEFCCR
approach is a scalar value within the interval which is defined by the minimal or
maximal efficiencies based on the proposed approach in this paper. The analogous
result also holds for the rank of each DMU based on the two approaches. In particular,
these results can be attributed to the fact that GEEFCCR approach evaluates DMUs
just based on just one feasible equilibrium efficient frontier, disregarding other

equally feasible equilibrium efficient frontiers.

F1 F2 F3 F4 F5 F6 F7 F8 FS F10 F11 F12 F13 F14 F15 F16 F17 F18

Il

Figure 3 Rank intervals for 18 companies.
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The rank intervals and dominance relations show that there are no domination
relations among F6, FII and F17, indicating that DMUs may perform quite
differently for different equilibrium efficient frontiers. From Figure 3, we see that the
rank of each firm in the GEEFCCR method is included in the corresponding ranking

interval calculated based on all feasible equilibrium efficient frontiers. However, the
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nondominated F/7 can have the worst rank 18 when some equilibrium efficient
frontiers are chosen, even though it is efficient in the the CCR model. In constrast, the
rank of F'/] can be the best one but never worse than 4, and thus it is more robust than
F6 and FI7 based on efficiency ranks, although F6, FII and FI7 are all
nondominated.

Figure 3 shows that F2, FI2, FI4 are CCR-inefficient, but they could be the
second best DMUs for some feasible equilibrium efficient frontiers. Another result is
that F/ ranks 9" based on the CCR model, while it can assume ranks in the range
from the 4™ to the 9" based on the proposed approach in this paper.

6. Conclusion and Future Research

In this paper, we have developed several models to calculate the efficiency and rank
intervals as well as dominance relations for DMUs which produce fixed-sum outputs.
In contrast to previous approaches, these results are based on the consideration of all
feasible equilibrium efficient frontiers instead of a single efficient frontier. We have
compared our models with previous approaches, evaluating them by using the dataset
in Yang et al. (2011) to show that they offer more informative results. We have also
applied them to evaluate the performance of appliance industry companies of China in
2012 more comprehensively than what would be permitted by CCR and GEEFCCR
models, providing evidence on the usefulness of our methodological research.

However, we have not considered undesirable fixed-sum outputs such as
hazardous waste and noise. Therefore, the development of models for undesirable
fixed-sum outputs calls for further research. Another direction for continued research
direction is that of extending the proposed models to situations where the assumption
of constant returns to scale needs to be replaced by variable returns to scale.
Acknowledgement
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Appendix A.

Model (2) is a nonlinear model. Yang et al. (2015) transform it to be a linear one

by two steps. In the first step, they set J; j = W6 and obtain the model (Al):

M1n22|8’q|

=1 t=
m l
tz uryrj - Z Vixij + Z(Wtft] + 6’tj) =0 Vl, r, t,j

r=1 i=1 t=1

n
=0 vt (A1)

j=1

m
vixl-j = CV_]

[y

~

wifyy + 6’4 =0, Vtj
ur, vi, Wy = 0,8 free,

where C in the model (Al) is a positive constant that guarantees the denominator
YizqV;ix;; in the model (2) is positive and thus guarantees that the objective function
of model (A1) must be positive; otherwise, this function is zero.

In the second step, they set a;; = (|6t]| +6;;) and b = (|6 | 8¢;) (see

Si et al., 2013) so that Model (A2) is transformed to

l

m
s.t.Zuryr] vau +Z(Wtft] +ay; — bt]) =0 Virt,j

r=1 i=1 t=1
n
Z(atj —b)=0 vt (42)
=1
m
Z vixij > CV]
i=1

Wtft]‘l'at]_bt] 20 Vt,]

Ur, Vi, W, Qgj, bej = 0.
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Appendix B. Proof of Theorem 1
By Yang et al. (2015), we know that Model (2) is always feasible, and thus the

optimum (v}, u;, w; ,62‘]-)(Vi, r,t,j) exists. At this optimum, the objective function

obtains its maximum value and all constraints in Model (2) hold so that
l

Z Z wi |6¢;| = opti®
j=1t=1
Yr=1 Uryrj + Zé=1 W;(ftj + 5;}) —1 vj
=1V Xy
n
Z 5;=0 vt 2"
j=1

uy, v, wi 20, 6;*]- free.
A comparison of Models (2°) and (5) shows that these two models have the same

constraints and (vl* , Uy, WE, 6,}“]-)(\7’1', r,t,j) also satisfies all the constraints of Model

(5). Therefore, (vl* Uy, We, 6/ j)(Vi, r,t,j) is a feasible solution of Model (5), too.

Appendix C. Proof of Theorem 2

Theorem 2: Each DMU,’s efficiency is continuous in an interval[e/"", e;/***].

For any efficiency value of DMU; on all feasible equilibrium efficient frontiers

e =ey, Vey € [ef"", ef*™™

], the feasible solution to model (6) is denoted as
ok * QX . . * l *
(Ui »Upy We, O, VI, T, 8, ] ) . Here, g = X7-1 W Yrk + Xe=1W¢ fer-

This theorem is proven in three steps:

@) eo=ef™
Let e’ =ey+Ae,Ae>0,e € [ef"™, e | ul.=ui(ey+Ae)/e, |,
wi = wi(eg + Ae) /e, , 8; = 8;je0/(eo + Ae) , then

4

], uy, Wi, tjVi,7,t,j) is the feasible solution to model (6) for e = e’

when Ae - 0, because e’ = Y5_ u.y,x + Xty wify and the solution
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(i)

satisfies all the constraints of model (6), such as:

n l n l
55 ol =33 i) =t
j=1t=1 j=1t=1
n n
, , ey + Ae
Jj=1 Jj=1
m

*
Z v X = 1
i=1

eO Ae—0

fej+ 64 = frj+ 8¢ — fej+ 6520 Vi)

e+A

Zuryr, Z viz + Ewt(ft, +87))

1
J . Ae - Ae . o
= ) Uy <1+e_> Zv xl]+ZWtft] <1+ >+ZW1: tj
r=1 0 i=1 t=1
S S m l
= (Z UEYk +Zwtftj) *—+Zuryrk zvfxij + ) wi(fyj +6¢))
=1 i=1 t=1

Ae re-0 .
= (:E:Tiryrk +':E:‘thb) *'__'___90 vj
Thus, each DMUj’s efficiency on all feasible equilibrium efficient frontiers is

right continuous at the point e[,

ey = ey
Let e =ey—Ae,Ae>0,e € [ef"™, e | u.=ui(e;—Ae)/e, ,
wi{ = w¢(ey —Ae)/eg ) éj = 8;je0/(eq — Ae) ) then

], uy, wy, 6{1-),‘9’1',1‘, t,j is the feasible solution to model (6) for e = e’

when Ae - 0, because e’ = ¥5_ uLy,x + Xt wifi and the solution

satisfies all the constraints of Model (6) such as

n l l

S =33 il -
j=1t=1 j=1t=1

n n

ZS’- —Za*.*e—O— 0 vt

‘ Y L Y ey — Ae

=1 =1
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(iii)

, . €p Ae—0 . .
fej + 6t = fej + 8¢ *m_’ftj +6;;20 vt,j

l
zuryr} z ;xij + Zwé(ftj + 5{])
t=1

r=1 i=1
! !
= Zuryrk<1——)— vixij+Zwtft]-<1—e—)+ZW
: 0

r=1 i=1 t=1 t=1
Ae Ae 0 .
- —(Z Wy + Z WEfeg) vj

Thus, each DMU;,’s efficiency on all feasible equilibrium efficient frontiers is

NgE

left continuous at the point e;***.

mm < eo < e;{nax

First, let e’ =ey+Ae,Ae > 0,e’ € [e[™", e™*], ul. = u;(ey + Ae)/e, ,

¥
1 _ wi(eg+Ae) ’
W =—"7"—7"—",

o tj = O¢jeo/(eo + Ae), then (v, uy,wy,8;;), Vi, 7, t,j is the

feasible solution to model (6) for e = e’ when Ae — 0, because e’ =

S 1 UrYrk + 2ty Wi fu and the solution satisfies all the constraints of model

(6) so that
n 1 n 1
ZZW{|6{]-|=ZZW§ (j| =d = opti”
j=1t=1 j=1t=1
n n
25':25*.* 0 __0 vt
LY LY ep+ Ae
]:1 ]:1
m
ZU;xik =1
i=1
% eo Ae—0
fej + 6t = ftj+5tj*e T Ae > frj 020 V)

m

S
Zu;yr] Z 17 xl] + Zwt(ft] + 5t])
r=1

i=1
l

l
. z . Ae Z .
vl-xl-j+ Wtftj <1 +e—>+ We tj
0
t=1

t=1

N

i Ae
= UrYrk (1 + €_> -
0

s

r=1
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S l A N m l
e
= ( E UrYrr + E Wi fij) *—+ E UrYrk — § VX5t E we (fej + 6¢))
€0 .
r=1 t=1 r=1 i=1 t=1

l
ZS . Z . Ae nre-0 ]
( UrYrk + Wtftj) * >0 V]
€o
r=1 t=1

Second, let e’ = e, — Ae,Ae > 0,e’ € [e™™, e, ul. = uj(ey, — Ae) /ey,
t(eg—A * * , ..
w{ = %Oe) , Opj = 0/jeo/(eg — Ae), then (v],uz,wy,8(),Vi,r,t,j is

the feasible solution to model (6) for e =e’ when Ae — 0, because

e’ =¥S_ ULy + Xhoy wif and the solution satisfies all the constraints of

Model (6) such as

n l n l
INRCID PRI
j:l t=1 ]=1 t=1
n n
261' _25*'* 00w
LY LY eg—Ae
j=1 Jj=1
m
Zv:xik =
i=1
, " eo Ae—0 % .
fej+ 0ty = Joj+0p * oo fiy +0; 20 VL)
0

l
Z 0y - Z vizy + ) wify +8,)
t=1

r=1 i=1
! !
= Zuryrk<1——>— vixij+zwtftj<1_e_>+zw
0

r=1 i=1 = t=1

Ae Ae 0 )
_(z uryrk + Z Wtft]) *— V]

Thus, each DMUj’s efficiency on all feasible equilibrium efficient frontiers is

ANGE

continuous at every point in the interval [e["", e"¥].
In summary, Each DMU,’s efficiency is continuous in an interval [e]*™", el"],

completing the proof of Theorem 2.
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